Deploying Db2 in Your Own Private Cloud

Data Server Day

Stockholm - May 8th, 2018

Kelly Schlamb

Executive IT Specialist, IBM Cognitive Systems

🕲 kschlamb@ca.ibm.com

Agenda

- Cloud... a capability, not a location
- Components of a modern private cloud environment
- Db2 in the cloud
- Db2, virtual machines and containers
- Hyperconverged systems
- IBM Cloud Private

Cloud ...
a capability, not a location

Elasticity

Instant provisioning

Reduced reliance on IT

Agility

Self-service

Why Cloud?

Pay-as-you-go

Increased reliability

Scalability (massive scale)

Address skills gaps

Cost flexibility

Why Not Cloud?

"Security"

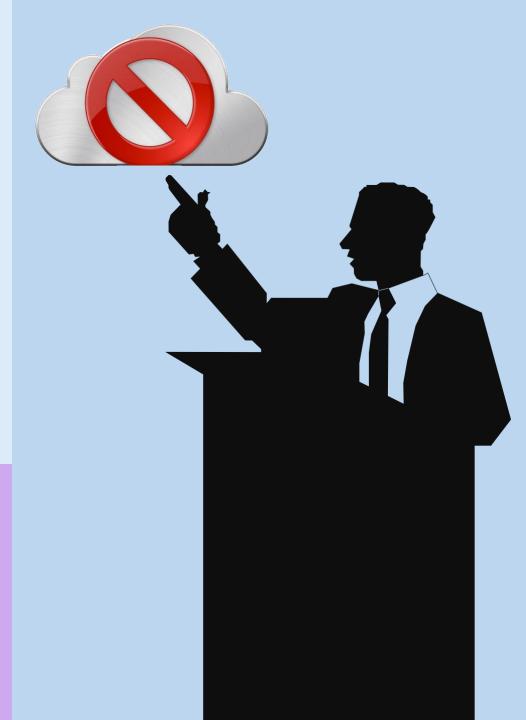
"Data locality"

"Regulatory & compliance requirements"

"Data latency"

"Performance"

"Impracticality of large scale data movement"


"Cost uncertainty"

"Need more flexibility & customization"

Are these legitimate concerns?

For some organizations, these are real inhibitors to public cloud adoption (with some more important/relevant than others)

However, don't think of cloud as a location...

it's a capability

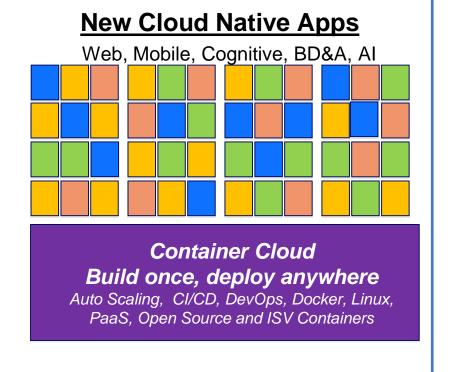
What is a Private Cloud?

Private cloud is a cloud computing model operated solely for a single organization. It can be managed internally or by a third party. It can be hosted behind the company firewall or externally.

What are the Benefits?

- Rapid deployment with selfservice provisioning
- Scalability
- Elasticity
- Greater control
- Defined performance
- Tighter security


- Reuse and pool existing hardware utilizing it more efficiently
- Predictable costs
- Flexible management options
- Customizable


Key use cases driving private cloud adoption

Modernize and Opening up enterprise Create new clouddata centers to work with native applications optimize existing applications cloud services Multi-cloud management and orchestration

Cloud is changing how workloads are built and delivered

Existing, Monolithic Apps ess Business Business **Proprietary Proprietary** Proprietary of Busin o Lines Lines Lines Relational Customer Enterprise Relationship Resource DB

Goldman Sachs Shifts to Docker

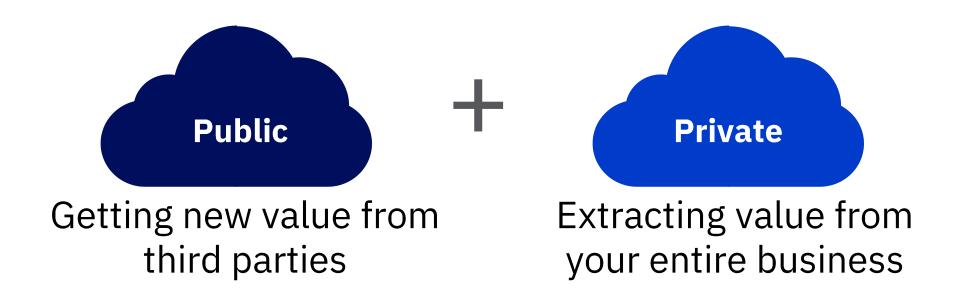
Mamt

Planning

... a yearlong project that will shift about 90% of the company's computing to containers, according to Mr. Duet. That includes all of the applications, nearly 5,000 in total, that run on its internal cloud.

THE WALL STREET JOURNAL.

2/24/16


By 2018, Over **60%** of New Apps will Use **Cloud-Enabled**

Continuous Delivery and Cloud-Native Application

Architectures to Enable Faster Innovation and Business Agility. *IDC Predicts*

Multi-cloud is a key strategy to organizational agility

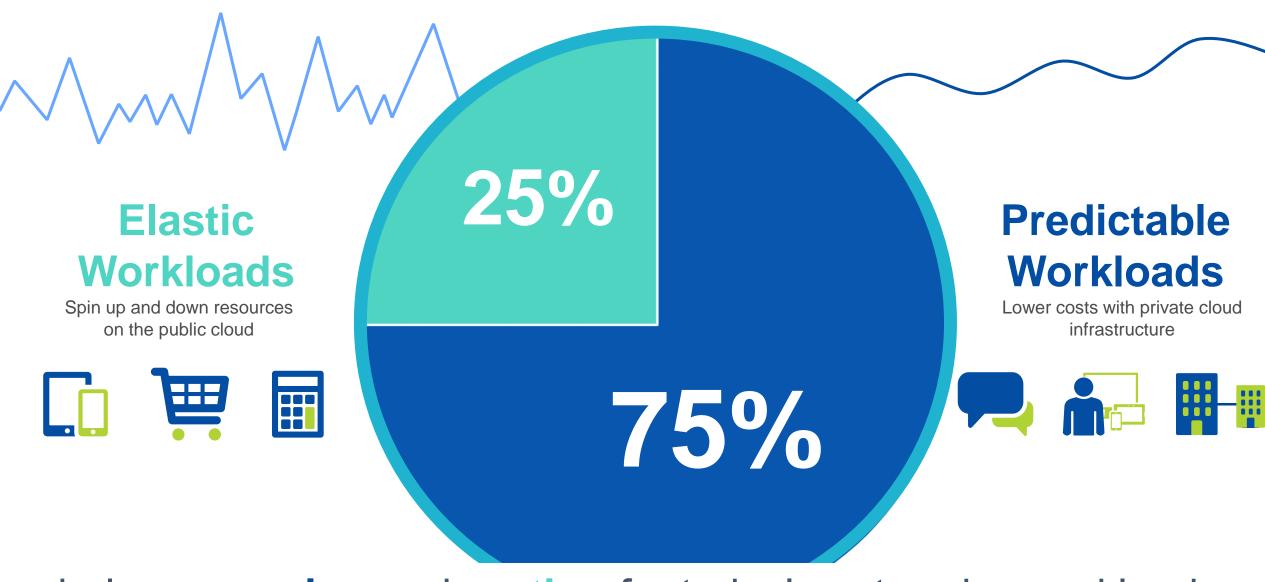
81% of enterprises are pursuing a multi-cloud strategy¹
Organizations are using an average of 4.8 different clouds¹


Public, Private, or Hybrid How to Decide?

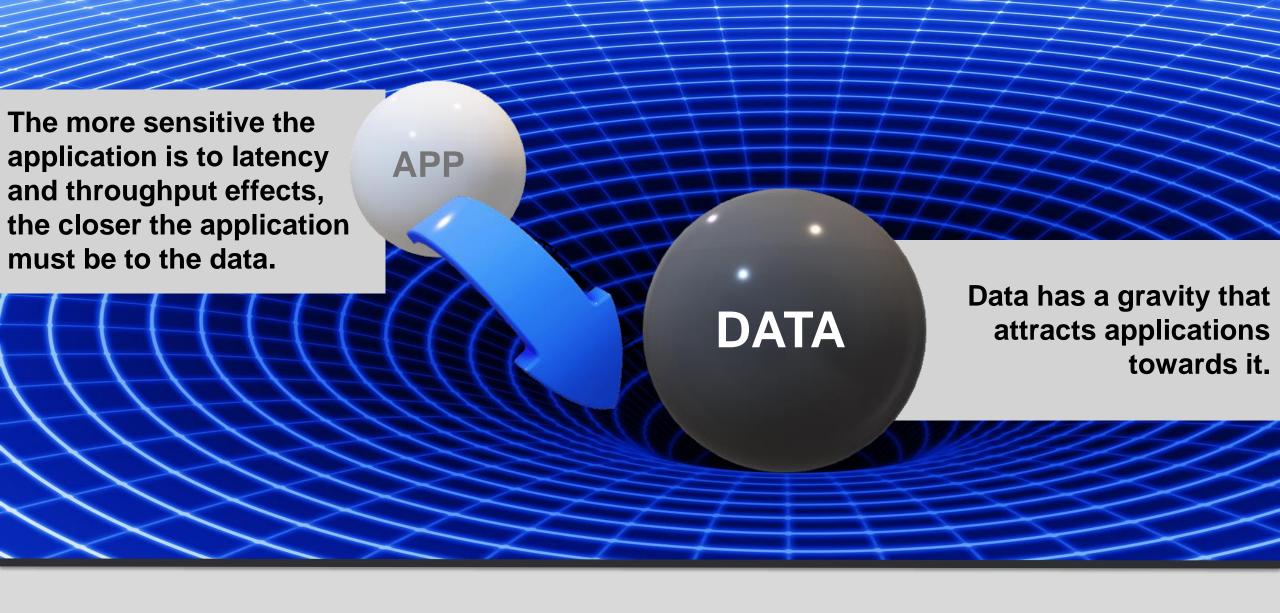
What are the economics and usage patterns?

Is the workload predictable or is it erratic?

What are the data gravity characteristics of the application?

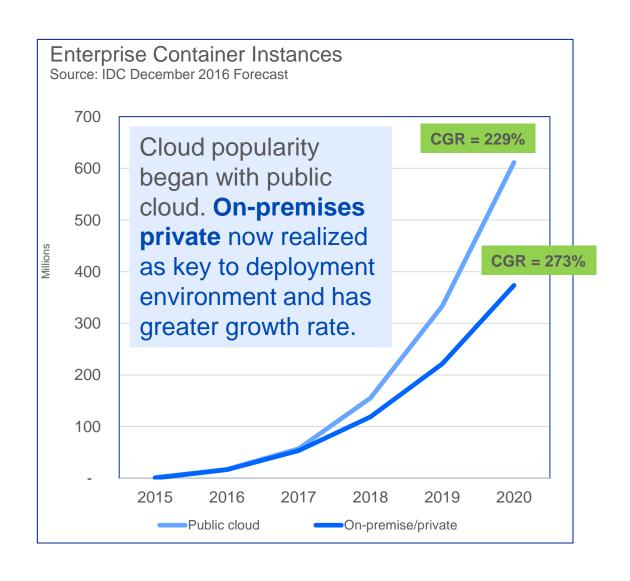

Buy or Rent (Private / Public)?

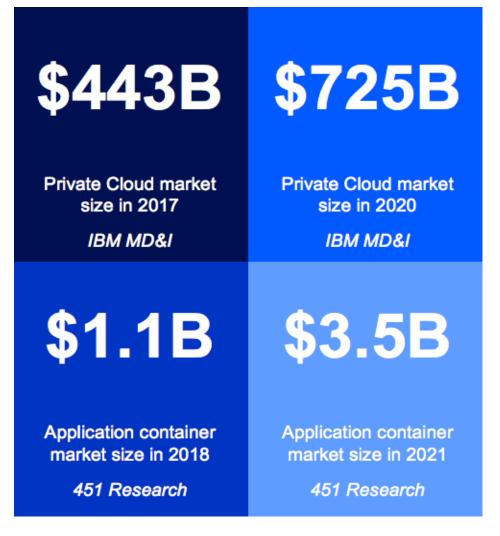
Staying in NYC for a weekend? PUBLIC CLOUD


Staying in NYC 6 months? PRIVATE or PUBLIC?

Staying in NYC 3 years? PRIVATE CLOUD

balance owning and renting for today's enterprise workloads


Data behind the firewall attracts applications on premises.


Data born on the public cloud attracts applications to public cloud.

Components of a modern private cloud environment

Enterprises are deploying on-premises clouds and containers as a foundation for their hybrid cloud strategies

What you need for a Private Cloud

Middleware, Data, Analytics and Developer Services

Cloud enabled middleware, messaging, databases, analytics, and cognitive services

Core Operational Services

Simplify Operations Management, Security, and Hybrid integration Provision infrastructure and apps across environments

Container Platform

Container orchestration

Infrastructure

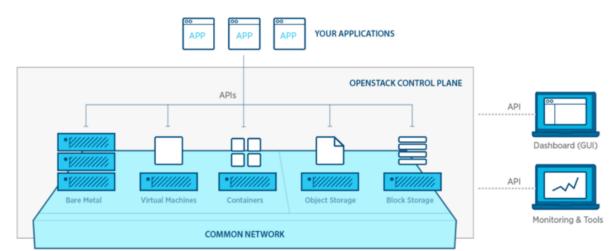
Optimized for the Cloud and Analytics

Some Common Private Cloud Infrastructure Components

Lightweight, standalone, executable package (containers) of software that includes everything needed to run it.

Platform for automating deployment, scaling, and management of containerized applications.

Charts that define, install, and upgrade
Kubernetes applications.


CLOUD F QUNDRY

Platform as a service (PaaS) for building, deploying, running and scaling applications.

OpenStack

- Free, open source software platform for cloud computing
- Not just one product modular, made up of nearly 60 open source projects
 - Nova core of the platform, let's you provision compute instances
 - Does not include built-in virtualization, but uses what you already have (e.g. KVM, VMware, PowerVM)
 - Cinder persistent block storage for compute instances
 - Neutron software-defined network functionality
 - Keystone identity service for authentication across all OpenStack components
 - Glance image service (discover, register, retrieve VM images)
 - Swift object storage
 - ...
- Build it all yourself (not simple) or optionally use one of various distributions that exist (e.g. Red Hat, SUSE, Ubuntu)

What is Docker?

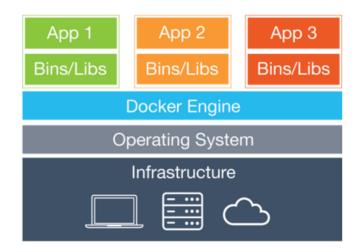
- Docker Inc. is the original author and primary sponsor of the Docker open source project
 - Released as open source project in March 2013
 - Quickly gained traction from open source community, as well as attention from venture capitalists and technology partners (including IBM)
- Docker is an open platform for developing, shipping, and running applications
 - Solves dependency chaos in application development and reduces development life cycle
- Docker brings container technology to the masses
 - Many companies have been using container technology
 - Docker provides tooling and platform to facilitate adoption

Docker Solves Dependency Chaos

Before Docker

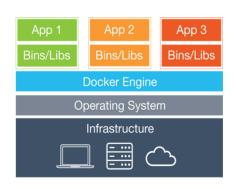
- Slow deployment time
- Huge costs and resources
- Difficult to scale
- Difficult to migrate
- Hardware vendor lock in

After Docker

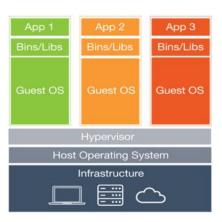

- No more broken dependencies
- Virtualized OS makes it light weight and portable
- Build any app in any language in any stack
- Dockerized app can run anywhere on anything

Benefits

- Scalable scaling up and down is fast and easy
- Portable snapshot of an environment can turn into a container easily
- Density more efficient use of resources so able to fit more containers onto a physical server
- Deployment many options for deployment to physical servers, virtual servers, cloud


How does Docker Work?

- Docker separates applications from infrastructure using container technology
 - Wrap up a piece of software in a complete filesystem that contains everything it needs to run: code, runtime, system tools, system libraries
- Container based virtualization uses the kernel on the host's OS to run multiple guest instances
 - Each guest is a container with its own root file system, processes, memory, devices and network ports



Docker Containers vs. Virtual Machines

Virtual Machines

Docker

Based on Container technology

Provides OS-Level process isolation

Containers include the application and all of its dependencies

Host kernel is shared amongst

Docker containers

Virtualization Technology (hypervisor)

Provides hardware virtualization

Each virtual machine includes the application, the necessary binaries and libraries and an entire guest operating system

Advantageous for packaging and shipping

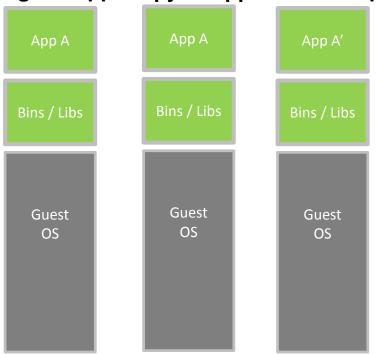
host operating system

 Easier and more lightweight to deploy and faster to start up than virtual machines

Run as an isolated process in userspace on the

Best for native execution to share and manage hardware, allowing multiple different environments, isolated from each other, to be executed on the same physical machine

Both technologies can be used in conjunction


Why are Docker Images Lightweight?

Containers

Original App Copy of App **Modified App** No OS to take No OS. Copy on write Can share capabilities allow up space, bins/libs us to only save resources, or require the diffs between restart container A and container A' App App Α A Libs

Virtual Machines

Original App Copy of App Modified App

Every app, every copy of an app, and every slight modification of the app requires a new virtual server

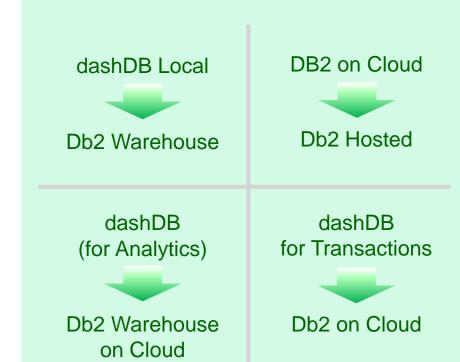
Db2 in the Cloud

Evolution of IBM's Cloud and Db2 Offering Names

SOFTLAYER

- Infrastructure provider (laaS)
- Acquired by IBM in 2013

IBM Bluemix


- Platform-as-a-Service (PaaS)
- Available as Public, Dedicated and Local
- Introduced in 2014

- Bluemix integrates SoftLayer products and services into its catalog
- Integration in 2016

- IBM Cloud
- Unification of public, private, hybrid and multi-cloud under one brand
- October 2017

Public/Private/Hybrid Cloud Options for Db2

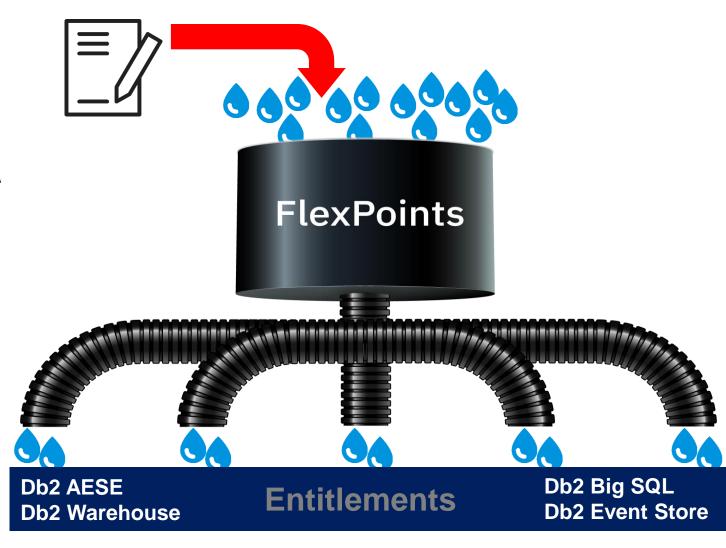
		Provisioning & Db2 Setup	Maintenance	Management
"Bring Your Own License"	 Custom-deployable software on your own infrastructure, or private or public cloud Fully customizable for any type of workload Customer managed 	28		28
Db2 & Db2 Warehouse in IBM Cloud Private	 Private cloud platform for developing and managing on-premises, containerized applications Db2 and Db2 Warehouse in catalog of deployable software (via containers) Customer managed 	IBM		28
Db2 Hosted	 Hosted database-as-a-service (IBM Cloud, AWS) Pre-defined hardware configurations Fully customizable for any type of workload Customer managed 	IBM	28	28
Db2 Warehouse	 Deploy on your own infrastructure, or private or public cloud Docker container technology for fast and simple deployment Scalable, elastic and optimized for analytic workloads Customer managed 	IBM	28	28
Db2 Warehouse on Cloud	 Fully managed database-as-a-service Pre-defined hardware configurations optimized for analytic workloads Public cloud (IBM Cloud, AWS) 	IBM	IBM	IBM
Db2 on Cloud	 Fully managed database-as-a-service Pre-defined and flexible hardware configurations optimized for transactional and general purpose workloads Public cloud (IBM Cloud) 	IBM	IBM	IBM

Db2 in the Cloud: "Bring Your Own License"

- Traditional Db2 perpetual licenses can be used in public and private clouds
- Eligible public clouds and PVU per vCPU values listed here:
 - https://www-01.ibm.com/software/passportadvantage/eligible_public_cloud_BYOSL_policy.html

Provider	Offering	PVUs per vCPU or Core
IBM	IBM Cloud Virtual Servers	70 PVU per core
Amazon	EC2 Instances & Dedicated Instances	70 PVU per vCPU
Google	Google Compute Engine	70 PVU per vCPU
Microsoft	Azure Virtual Machines	70 PVU per vCPU

Examples - not an exhaustive list


- Sub-capacity licensing applicable for virtualized environments
 - https://www-01.ibm.com/software/passportadvantage/subcaplicensing.html
- Db2 11.1 Direct Editions available for public or private cloud deployments
 - Available in Standard and Advanced editions
 - Simplified license metric, the Virtual Processor Core (VPC) sold as a monthly license charge

NEW!! IBM Hybrid Data Management Platform Bundle

The Hybrid Data Management Platform (HDMP) is purchased in blocks of 1000 FlexPoints

- Each component (product) has a FlexPoint price (per VPC)
- Choose how to deploy your FlexPoints and change deployment allocations (deploy and decommission) anytime you wish
- Deploy in private (on-premises) or public cloud

Choices to Build Your Own Private Cloud for Db2

Do everything yourself

- Run OpenStack, PowerVM, VMware, etc. to create virtual machines
- Build and deploy containers using Docker and Kubernetes
- IBM provides pre-built containers for Db2 to get you started quickly and easily

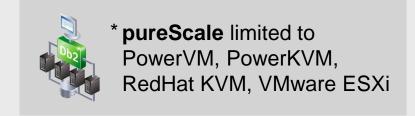
Leverage laaS / hyperconverged platform like Nutanix

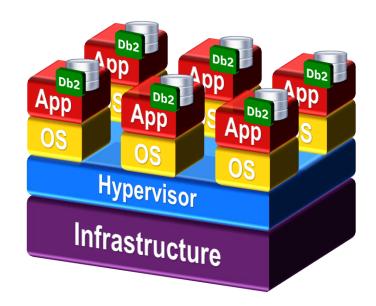
- Solutions that provide server, storage and networking virtualization
- You just need to deploy Db2 on top of that infrastructure consolidation

IBM Cloud Private

- Provides both laaS and an application catalog including Db2
- ... or combination of approaches (e.g. ICP on Nutanix)

Db2, Virtual Machines and Containers




Db2 Hypervisor Support

Examples of Hypervisors supported by Db2 11.1 AESE*

- PowerVM
- PowerKVM
- KVM for z
- Red Hat KVM
- z/VM
- VMware ESXi

http://ibm.biz/Db2_v11_Hypervisors

IBM-provided Docker Container Images for Db2

- Linux x86 images can also be deployed using Docker for Mac and Docker for Windows (only available with newer versions of Windows)
- Docker Toolbox (with Kitematic) can still be used for Db2 Warehouse Developer-C for Non-Production on Mac/Windows

https://store.docker.com

IBM Db2
DB2 Developer-C Edition

- Free
- Full feature for non-production environments
- Ideal for developers
- Platforms: Linux on Intel x86/Power LE/Z

https://store.docker.com/images/db2-developer-c-edition

IBM Data Server ManagerDeveloper-C Edition

- Free
- Full feature for non-production environments
- Ideal for developers
- Platforms: Linux on Intel x86/Power LE/Z

https://store.docker.com/images/data-server-manager-developer-c-edition

IBM Db2 Warehouse (Enterprise Edition)

- 90 day free trial (license required after this)
- Fully supported for production workloads when licensed
- SMP or MPP
- Platforms: Linux on Intel x86/Power LE/Z

https://store.docker.com/images/ibm-db2-warehouse-ee

2 Warehouse

IBM Db2 Warehouse Client Container

- No charge
- Remote shell environment with tools to migrate, operate & maintain Db2 Warehouse
- Platforms: Linux on Intel x86/Power LE

https://store.docker.com/images/ ibm-db2-warehouse-client-container

IBM Db2 Warehouse Developer-C for Non-Production

- Free
- Unwarranted, not intended for production
- No resource restrictions, no expiration
- SMP only
- Platforms: Linux on Intel x86 (Windows/Mac)

https://store.docker.com/images/ ibm-db2-warehouse-dev

B2 Warehouse

IBM Db2 Warehouse Sample Data Container

- No charge
- Sample data container; can be deployed on a node where Db2 Warehouse is deployed
- Platforms: Linux on Intel x86/Power LE

https://store.docker.com/images/ ibm-db2-warehouse-sample-container

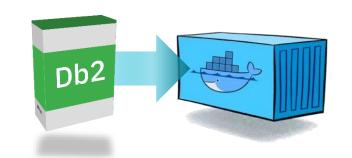
Example of Deploying Db2 Developer-C Image

- 1. Log into Docker repository: docker login -u=<userID> -p=<password>
- 2. Pull down image: docker pull store/ibmcorp/db2_developer_c:11.1.3.3-x86_64
- 3. Create .env list file with contents below (edit based on your needs):

```
LICENSE=accept
DB2INSTANCE=db2inst1
DB2INST1_PASSWORD=myPassW0rd
DBNAME=testdb
BLU=false
ENABLE_ORACLE_COMPATIBILITY=false
UPDATEAVAIL=NO
TO_CREATE_SAMPLEDB=false
REPODB=false
IS_OSXFS=false
PERSISTENT_HOME=true
HADR_ENABLED=false
ETCD_ENDPOINT=
ETCD_USERNAME=
ETCD_PASSWORD=
```

IBM IBM Db2

DB2 Developer-C Edition


- Free
- Full feature for non-production environments
- Ideal for developers
- Platforms: Linux on Intel x86/Power LE/Z

https://store.docker.com/images/db2-developer-c-edition

Example of Deploying Db2 Developer-C Image (cont.)

- 4. Create directory/file system that will be used to hold all of the permanent Db2 data and files: mkdir /db2files
- 5. Create and start new container from image: docker run -h db2serverhost --name db2server --restart=always --detach --privileged=true -p 50000:50000 -p 55000:55000 --env-file .env_list -v /db2files:/database store/ibmcorp/db2_developer_c:11.1.3.3-x86_64
- 6. The above command finishes instantaneously, but the Db2 setup (installation, instance creation) is taking place in the background. Wait for it to complete by following the logs: docker logs —— follow db2server
- 7. To log into the container: docker exec -ti db2server bash -c "su db2inst1"

What did IBM do behind the scenes to provide the Db2 Developer-C image?

- Built image using a Dockerfile (think of it like a recipe) that contains the following types of steps:
 - Installs various libraries and binaries that Db2 and that the overall install/setup process needs
 - Uses curl to pull down Db2 installation package
 - Runs Db2 pre-requisite checking script
 - Installs Db2
 - Sets up license file
 - Calls a script included in the image that does further setup work during initial container startup
- You can do this kind of thing as well provide your own repeatable, customized deployments if the IBM versions don't fit the bill for whatever reason

Creating your own Db2 Container Image – Very Basic Example

- Local copy of Db2 Express-C 11.1
- Uses container's ephemeral storage by default
 - Instance and databases files will only live as long as the container itself lives – but will last through container stops and starts)

To build image:

- Create an empty directory (e.g. ~/DOCKER)
- Download and copy Db2 installation package into directory (no need to unzip, untar)
- Create a file in directory call Dockerfile (as shown on right)

Run the following build command:

```
docker build -t db2expr_img .
```

To start and enter container:

```
docker run -it --name mydb2expr
--privileged db2expr img
```

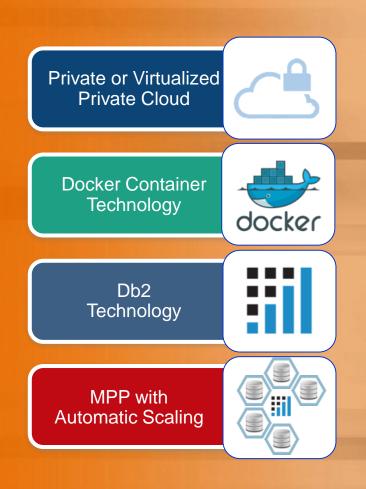
```
# Using Ubuntu 16.04 base image as starting point.
                                                         Dockerfile
FROM ubuntu:16.04
# My contaact information.
MAINTAINER Kelly Schlamb (kschlamb@ca.ibm.com)
# Install Db2 pre-regs and additional commands that I find useful.
RUN dpkg --add-architecture i386 && \
    apt-qet update && \
    apt-get -y install rpm binutils libaio1 libx32stdc++6 \
                       libpam0g:i386 libnuma1 file vim
# Setup temporary installation directory and copy Db2 Express-C
# install binaries into it. This will automatically unzip & untar.
RUN mkdir /tmp/db2install
ADD v11.1 linuxx64 expc.tar.gz /tmp/db2install
# Create user IDs for Db2 instance (db2inst1, db2fenc1)
RUN groupadd db2iadm1 && \
    useradd -d /home/db2inst1 -g db2iadm1 \
            -m -s /bin/bash -p passWORD db2inst1
# Non-root install of Db2 and create the db2inst1 instance.
RUN su - db2inst1 -c "/tmp/db2install/expc/db2 install \
                      -b /home/db2inst1/sqllib -y -t \
                      /tmp/db2 install.trc -l /tmp/db2 install.log"
# Remove temporary installation files.
RUN rm -Rf /tmp/db2install
```

Creating your own Db2 Container Image – Very Basic Example (cont.)

```
root@ksserver1:~/DOCKER# docker images
REPOSITORY
                                            TMAGE ID
                                                               CREATED
                                                                                    SIZE
db2expr img
                                                               About a minute ago
                                                                                    2.58GB
                     latest
                                            fa774af58ac4
root@ksserver1:~/DOCKER# docker ps
root@ksserver1:~/DOCKER# docker run -it --name mydb2expr --privileged db2expr img
root@3eda2fcb6107:/# su - db2inst1
db2inst1@3eda2fcb6107:~$ db2start
SQL1063N DB2START processing was successful.
db2inst1@3eda2fcb6107:~$ db2 create database testdb
DB20000I The CREATE DATABASE command completed successfully.
root@ksserver1:~/DOCKER# docker ps (need to run in another window, outside container, to see this)
CONTAINER ID
               IMAGE
                              COMMAND
                                                                                      NAMES
                                            CREATED
                                                             STATUS
                                                                             PORTS
3eda2fcb6107
               db2expr img
                             "/bin/bash"
                                            2 minutes ago
                                                            Up 2 minutes
                                                                                      mydb2expr
```

Homework ?

Some next steps to properly productize the environment:


- Use a permanent volume for your database directory and files (--volume in docker run command)
- Expose ports from the container to the host for client/server connectivity (--publish in docker run command)
- Create entry point script to start Db2 and have container run permanently in the background

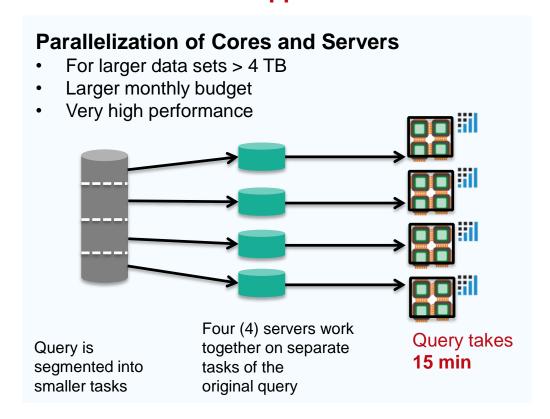
Useful Docker Commands

Action	Command
Show Docker version	docker version
Show Docker system information	docker info
List Docker images	docker images
List all Docker images, even intermediate ones	docker images -a
List running Docker containers	docker ps
List all Docker containers, not just those that are running	docker ps -a
Start new container from an image	docker run <options> <imagename></imagename></options>
Run command (interactively) in existing container	docker exec -it <containername> <command/></containername>
Login to Docker registry	docker login -u= <userid> -p='<password>'</password></userid>
Show process tree for container	docker top <containername></containername>
Start container that was previously stopped	docker start <containername></containername>
Stop container that is currently running	docker stop <containername></containername>
Search for images (from repository)	docker search <term> (e.g. docker search db2)</term>
Pull image	docker pull <imagename>[:TAG]</imagename>
Remove container	docker rm <containername></containername>
Remove image	docker rmi [-f] <imagename></imagename>

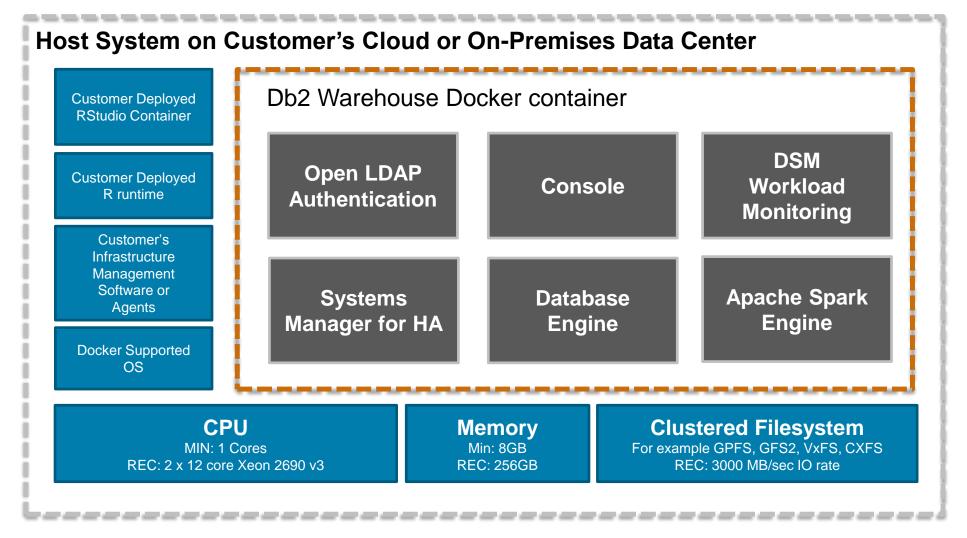
Db2 Warehouse

Benefits of Db2 Technology with Fast Deployment into Your Private Cloud Environment

- Highly flexible data warehouse
- Optimized for fast and flexible deployment into private clouds
- Uses Docker container technology
- Built on top of Db2 technology, it shares the benefits of
 - BLU Acceleration in-memory columnar technology
 - Netezza In-database analytics
 - Oracle compatibility
- Massively Parallel Processing (MPP) with automated scaling capabilities to increase infrastructure efficiency
- Simplified setup and updates


Db2 Warehouse Utilizes Massively Parallel Processing (MPP)

- Coordination of multiple CPU cores and servers, working together to solve complex tasks and queries faster
- Add more servers for additional processing power!


Traditional Approach

Parallelization of Cores For smaller data sets < 12TB Generally less expensive Slower performance Query takes 1 hour

MPP Approach

Db2 Warehouse Architecture

Scale Up CPU, Memory, IO according to your infrastructure availability

Db2 Warehouse MPP Elastic Scalability

Automatic detection of hardware resources for scaling operations

- Docker container automatically detects hardware resources available
- Minimal interruption to your database operation requires temporarily stopping Db2 Warehouse services while you implement the changes

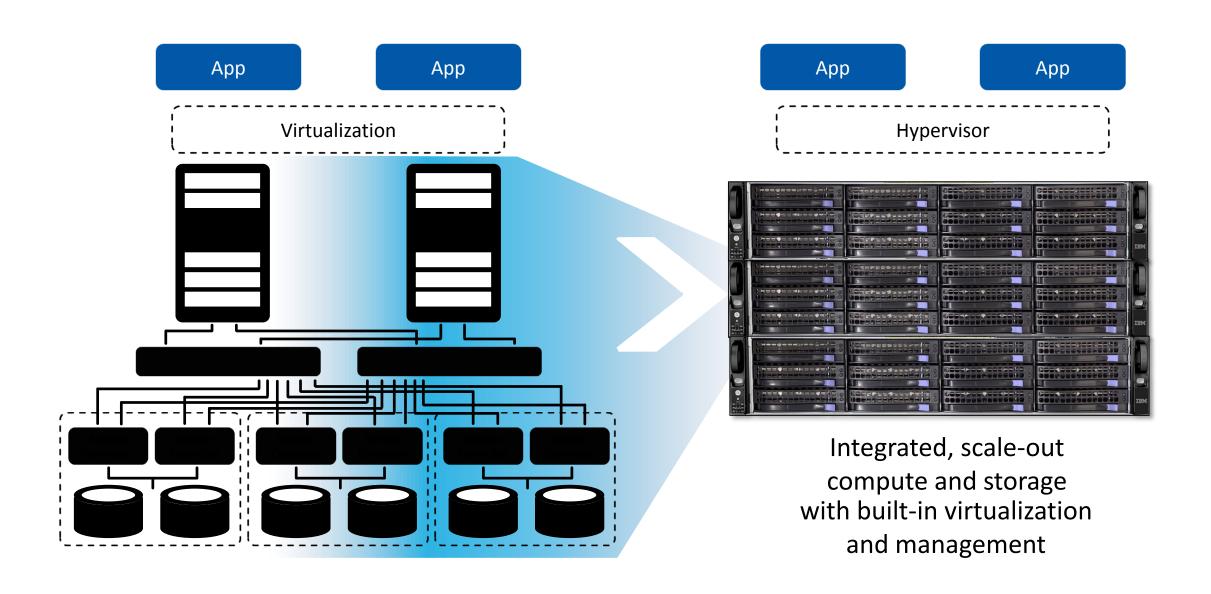
Scale in or scale out: removing existing or adding new nodes

Partitions will be automatically re-balanced across all containers

Scale up or scale down: change the resources available to a node

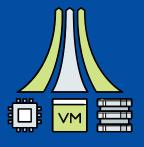
 Easy because independence between application container and named volume storage container

Portability: Replacing the node and clustered file system


- Stop container on old server, copy data to new file system, start container on new server

Hyperconverged Systems

On-premises Enterprise Cloud – Building Blocks Defined



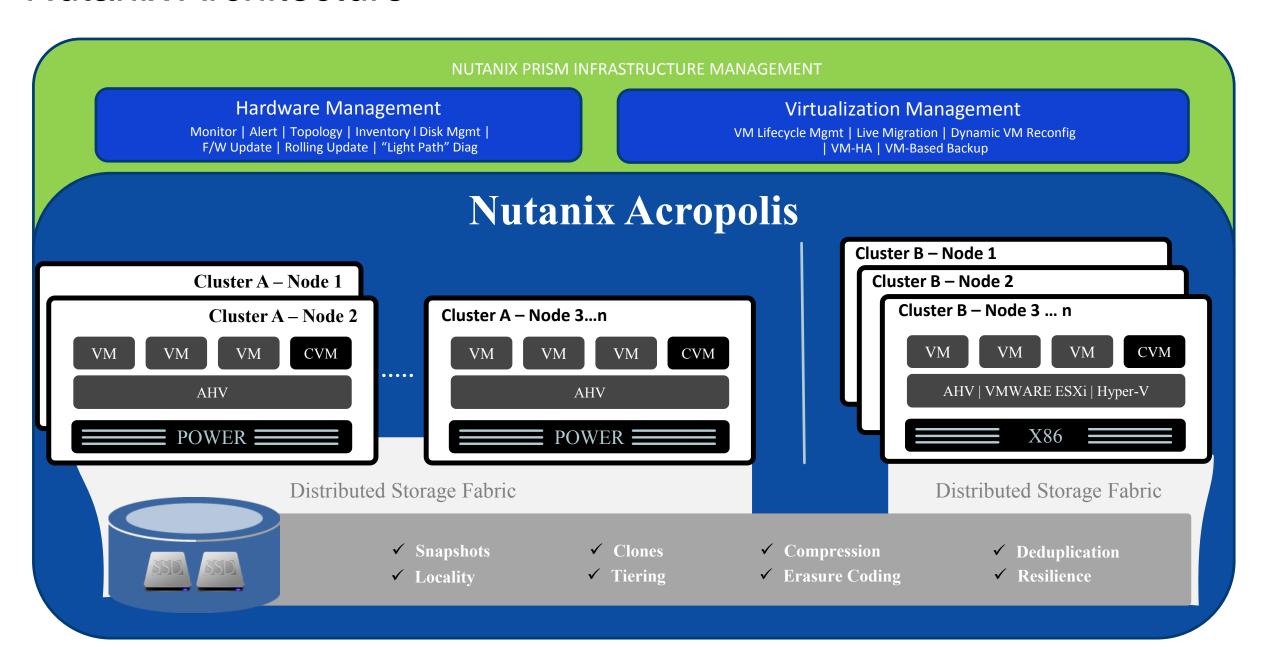
IBM Hyperconverged Solution with Nutanix Components

Nutanix Prism

Simplify infrastructure management with one-click operations.

Nutanix Acropolis

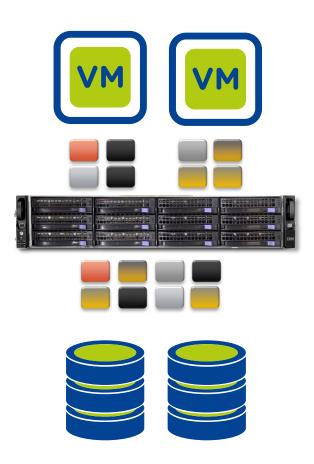
A powerful scale-out data fabric for server, storage, virtualization and networking.

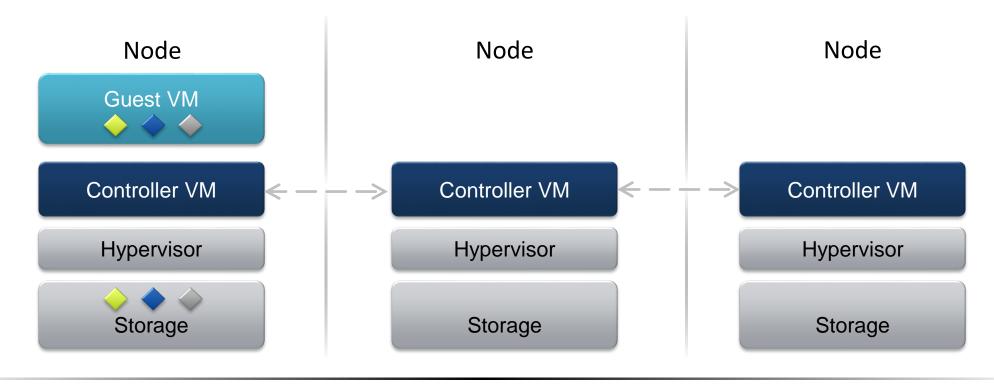

Application and infrastructure management

that radically simplifies datacenter operations.

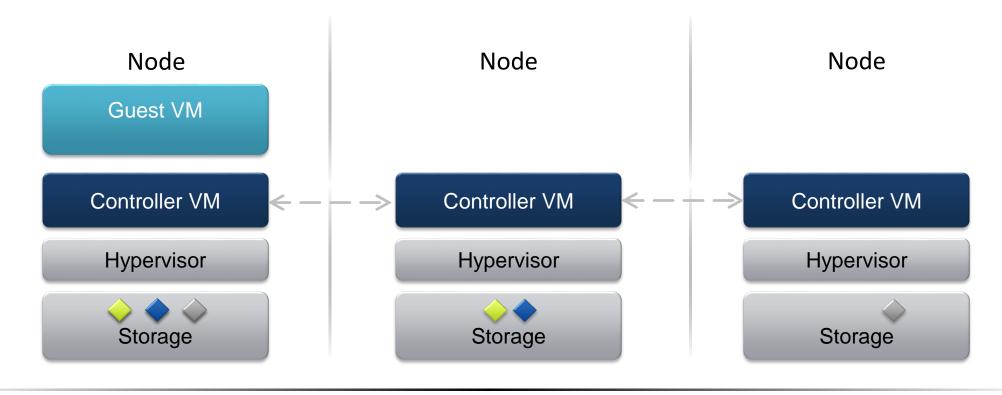
Turnkey infrastructure platform


that converges compute, storage, networking and virtualization to run any application, at any scale.


Nutanix Architecture

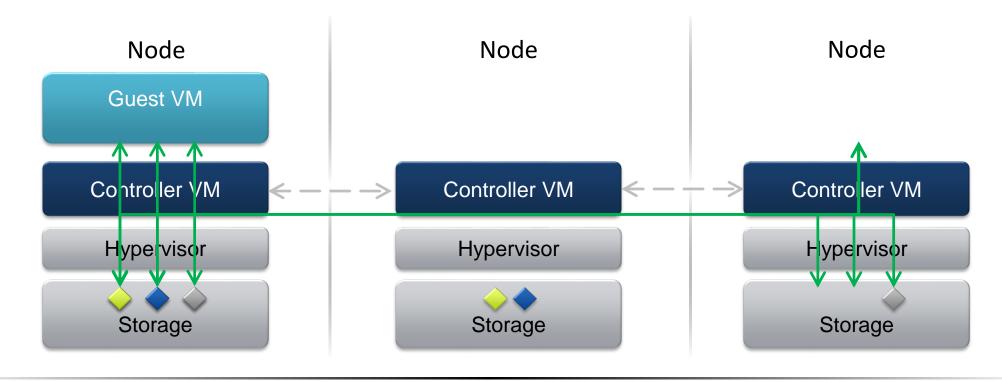

Important to keep the data local to the VM accessing it

- Keep data on the same node as VM
- All read operations localized on same node
- ILM (Intelligent Lifecycle Management) transparently moves remote data to local controller
- Reduces network chattiness significantly
- Data follows VM during vMotion, Live Migration


Anatomy of a write I/O

Performance and availability

- Data is written locally
- Replicated on other nodes for high availability
- Replicas are spread across cluster for high performance


Anatomy of a read I/O

Performance and availability

- Data is read locally
- Remote access only if data is not locally present

Moving a VM from one node to another

Seamless VM Migration

- Metadata service can access data from anywhere
- Locality improves over time

Db2 on Nutanix

- Nutanix is an laaS platform
- Using Prism management console, create VM and assign storage for Db2
- Snapshot and clone VMs
 - Prism includes a catalog service for storing VM snapshots and images for simplified deployment (prod, test, dev)
- HADR, backup, restore, archive logging all used as usual
 - Additionally, multi-node Nutanix platform built to be resilient (e.g. VM migration for unavailable node)
- Video demoing use of Db2 on Nutanix:

Hyperconverged Systems

3YR with Support

\$15.15 per tps

\$25.54 per tps

Better 1.68x price/performance

(24 cores) 10,506 tps

Higher throughput

IBM Cloud Private

Introducing IBM Cloud Private

- Full stack private cloud software offering – not an appliance
- Built using industry standard open source projects including Docker, Kubernetes and Terraform
- Sits behind your firewall
- Enterprise grade, open by design

Rapid Innovation

Hybrid Integration

Investment Leverage

Management and Compliance

IBM Cloud Private brings cloud native to the enterprise

Rapid Innovation

- Open Kubernetes-based container platform
- Cloud Foundry for app dev and deployment
- DevOps toolchain integration

Hybrid Integration

- Integration capabilities to unlock and connect
- Secure access to public cloud services (AI, Blockchain)
- Consistent experience across private/public

Investment Leverage

- Containerized versions of IBM Middleware
- Prescriptive guidance to optimize workloads
- Work with existing apps, data, skills, infrastructure

Management and Compliance

- Core operational services including logging, monitoring, security
- Flexibility to integrate with existing tools and processes

IBM Cloud Private

Empowering developers, data scientists and administrators to meet business demands

Developers

Data Scientists

Administrators

Developers tap into a rich stack of built-in development tools and services. Data scientists can build and train models more quickly and business analysts can provide critical insights faster.

Provide on-demand self-service IT, with security and control, optimized for the workloads of developers, data scientists and business analysts.

IBM Cloud Private Solution Overview

Enterprise Content Catalog


Open Source and IBM Middleware, Data, Analytics, and Al Software

Core Operational Services

Log Management, Monitoring, Security, Alerting

Kubernetes Container Orchestration Platform

Choose your infrastructure:

IBM **Z**

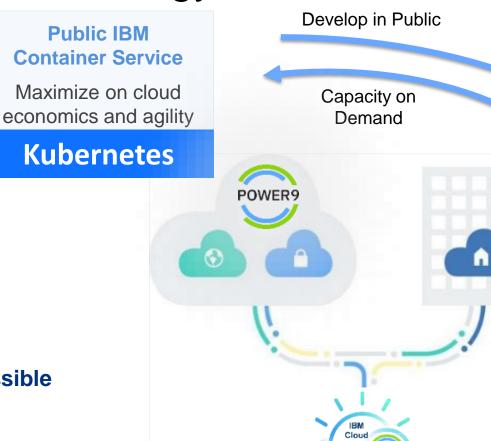
Strategic Value:

- Self-service catalog
- Agility, scalability, and elasticity
- Self-healing
- Enterprise security
- No vendor lock-in

Extend to the Heterogeneous Public Cloud for Optimized Multi-Cloud Strategy

Choice with consistency

Hybrid integration


DevOps productivity

Powerful, secure, accessible data and analytics

Accelerated Cognitive solutions

IBM Cloud Private

Deploy in Private

On-premises, behind the firewall for the most sensitive workloads

Kubernetes

Seamless Experience

Regardless of which combination you choose, you can expect a single, seamless experience

IBM Cloud Private Editions

Community

Platform

- Kubernetes
- Core services
- Content catalog of open source and IBM software

Freely Available in Docker Hub

Cloud Native

Platform

- Kubernetes
- Core services
- Content catalog

Cloud Foundry (Optional)

IBM Enterprise Software

- Microservice Builder
- WebSphere Liberty
- IBM SDK for node.js
- Cloud Automation Manager

Enterprise

Platform

- Kubernetes
- Core services
- Content catalog

Cloud Foundry (Optional)

IBM Enterprise SoftwareCloud Native Edition, plus:

- + WAS ND
- + MQ Advanced
- + API Connect Professional

+ ala carte IBM (e.g. Db2), ISV and open source applications or bring your own license

ICP – Kubernetes Content

*

Toolchain & Runtimes

UrbanCode Deploy

Microclimate

Microservice Builder

Jenkins (open source)

IBM WebSphere Liberty (MicroProfile, Web Profile, JEE Profile)

Open Liberty (open source)

IBM SDK for Node.js

Swift runtime (open source)

Nginx (open source)

Logging & Monitoring Services

ELK (open source)

Prometheus & Grafana (open source)

App Modernization Tooling

IBM Transformation Advisor

Multi-cloud Management

IBM Cloud Automation Manager

Digital Business Automation

IBM Operational Decision Manager
IBM Operational Decision Manager for Developers

Mobile

IBM Mobile Foundation

Data Services

IBM Db2 Direct Advanced Edition / AESE with

Data Server Manager

IBM Db2 Dev-C

IBM Data Server Manager (for Db2 Dev-C)

IBM Db2 Warehouse Enterprise

IBM Db2 Warehouse Dev-C

IBM Cloudant Developer Edition

MongoDB (open source)

PostreSQL (open source)

MariaDB (open source)

Galera clustering with MariaDB (open source)

Redis HA Topology (open source)

Messaging

IBM MQ Advanced

IBM MQ Advanced for Developers

Rabbit MQ (open source)

Integration

IBM Integration Bus

IBM Integration Bus for Developers

IBM DataPower Gateway Virtual Edition

IBM DataPower Gateway for Developers

IBM API Connect Professional

IBM API Connect Enterprise

Watson

IBM Watson Compare & Comply: Element Classification

Data Science and Business Analytics

IBM Data Science Experience Local

IBM Data Science Experience Developer Edition

IBM Watson Explorer Deep Analytics Edition

Data Governance and Integration

IBM InfoSphere Information Server for Evaluation

Management

IBM Netcool - integration (Probe for ICP Services – Logging events & Monitoring alerts)

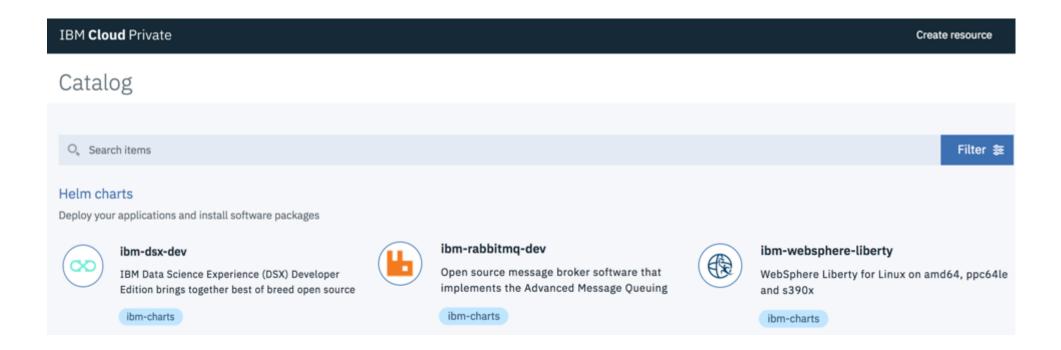
Connectivity

IBM Voice Gateway Developer Trial

Tooling

Web Terminal (open source)

Skydive - network analyzer (open source)


HPC/HPDA

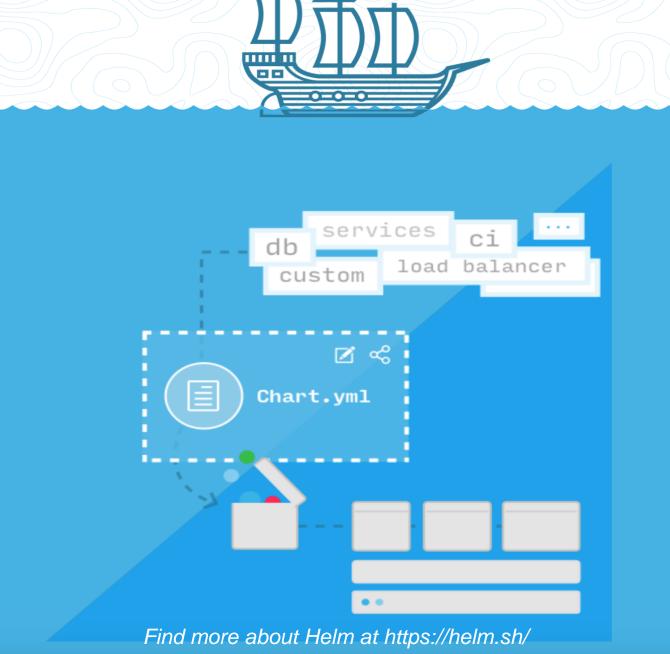
IBM Spectrum LSF Community Edition
IBM Spectrum Symphony Community Edition

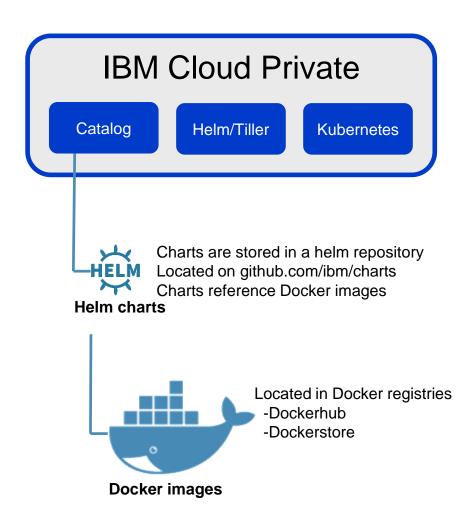
IBM Spectrum Conductor Tech Preview

What is the ICP Catalog?

Collection of deployment packages (Helm Charts) displayed as tiles with a simple UX to view and deploy software.

The Catalog provides access to software under separate license terms.


What is Helm?


The package manager for Kubernetes

Helm is the **open standard** for Application **Packaging and Deployment** for Kubernetes.

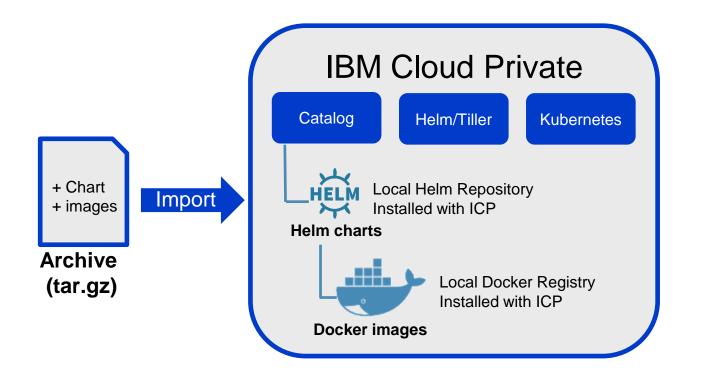
Helm charts can describe the most complex software built for Kubernetes: Resources, dependencies, variables, image locations.

Discover and Try Software

Discover and Try helm charts reside in the IBM Charts Repository on github.com/ibm/charts

Available from catalog in all IBM Cloud Private offerings, including Community Edition. Not shipped with the product.

Client accepts **separate license terms**: open source, IBM ILAN or ILAE licensed.


Content is continuously updated, **automatically available** to client's catalog upon refresh.

Docker images are sourced from public Docker registries.

Requires internet connectivity.

Documented process for disconnected mode (Knowledge Center)

Adding Purchased IBM Software to your Catalog

Purchased IBM Software is entitled in PPA

- 1. **Download** from Passport Advantage
- 2. **Import locally** into IBM Cloud Private (ICP)

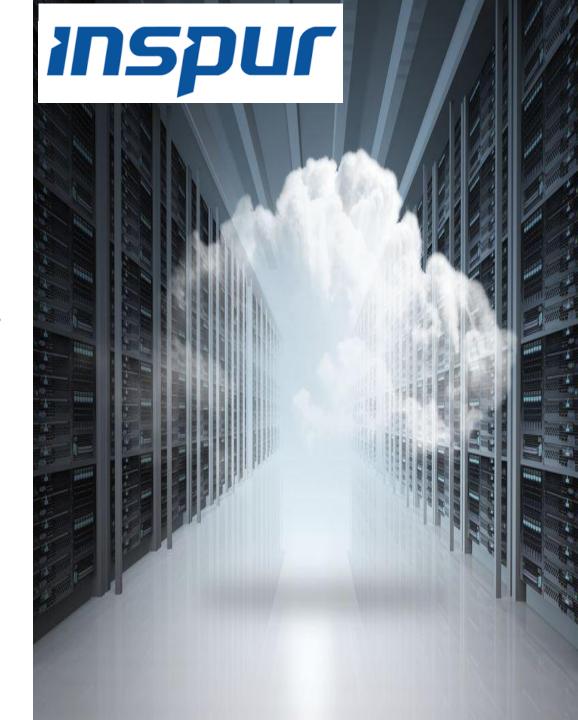
Purchased IBM software is provided with IPLA license.

Some software maybe sold with priced metrics other than VPC. Client is responsible for compliance to those metrics.

Several packages are entitled for production use and S&S through ICP Cloud Native and Enterprise editions, but are only accessed from IBM Charts repo and public Docker registries. This includes Microservice Builder, WebSphere Liberty and Node.js runtimes.

Inspur selects IBM Cloud Private to deploy their industrial cloud solutions

Business Needs


- Enterprise grade Platform as a Service
- Support across x86 and Power platforms
- Support for multiple development languages and runtimes

Solution

- IBM Cloud Private
- IBM UrbanCode Deploy
- IBM MQ

Benefits

- Increased speed of app development and deployment
- Platform flexibility

Five9 modernizes application infrastructure with IBM Cloud Private

Business Needs

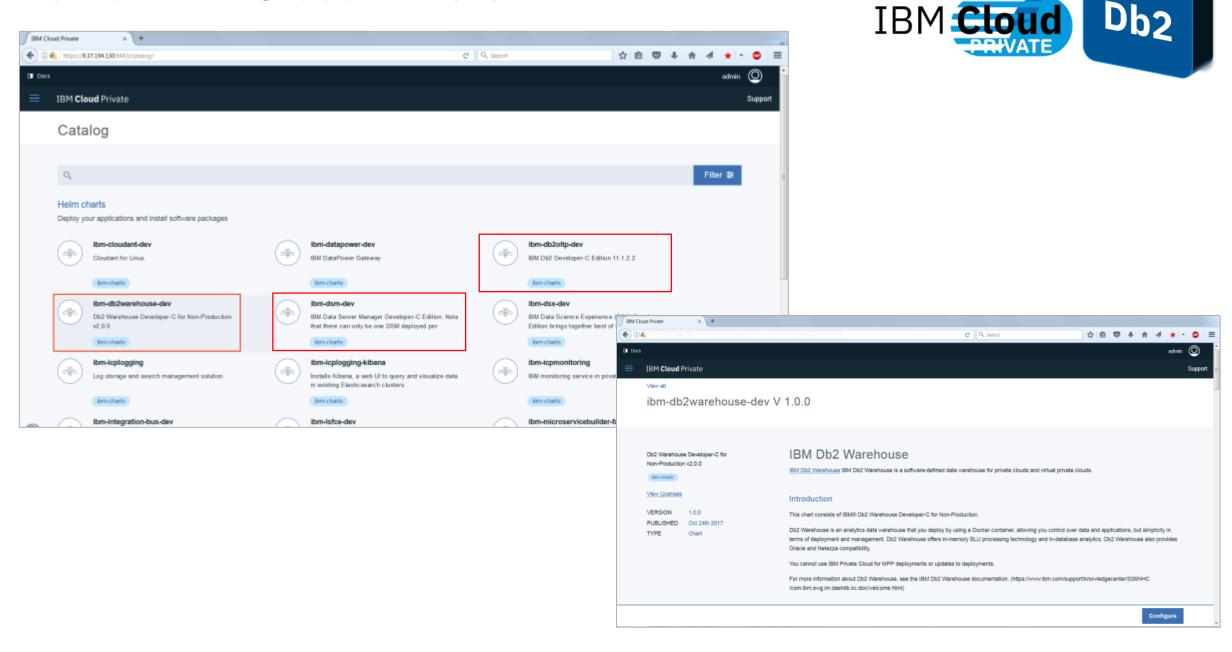
- Optimize and modernize its existing application infrastructure
- Quickly develop and deploy industry-specific cloud native applications
- On-premises cloud-native environment

Benefits

- Ability to leverage existing investments in applications and infrastructure
- Reduced costs associated with deployment, management, monitoring and scaling of applications

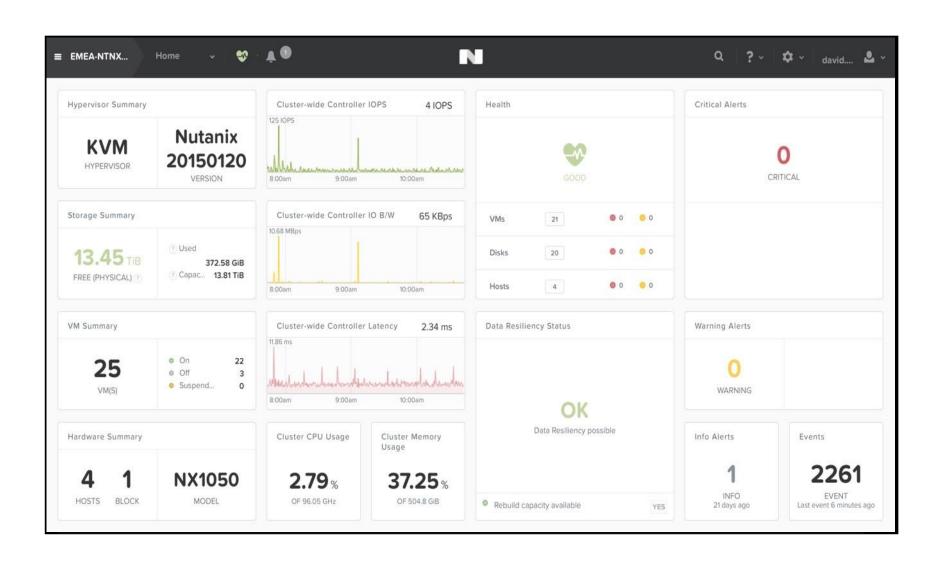
Db2 on IBM Cloud Private

- Non-production/community editions of Db2 are in catalog and are free to use
 - Db2, Db2 Warehouse, DSM
- Production editions (e.g. Direct Advanced, AESE) can be purchased (PPA)
- Build and deploy your own containers (you must have licenses for any licensed software you're deploying)
- ICP and Db2 Solution Brief:


https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=GMS14039USEN

Tutorial for deploying Db2 in ICP:

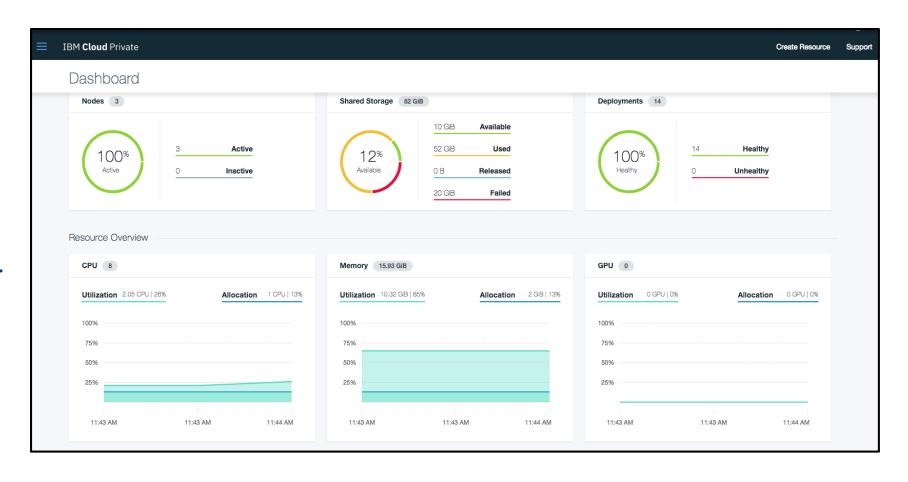
https://developer.ibm.com/recipes/tutorials/db2-integration-into-ibm-cloud-private


Db2 on IBM Cloud Private

IBM Cloud Private on Nutanix for Cloud Native DevOps

Manage Your Cloud Infrastructure

VM's, Compute, Storage, Networking

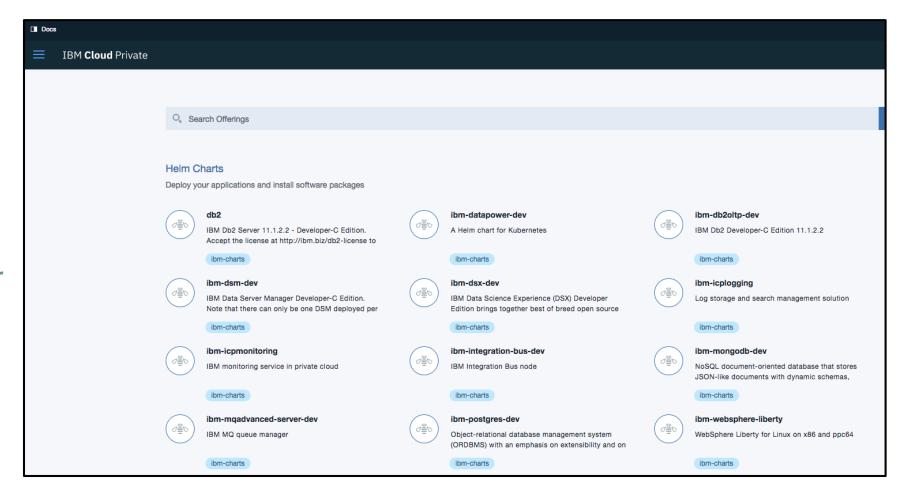


IBM Cloud Private on Nutanix for Cloud Native DevOps

Manage Your Cloud Infrastructure

VM's, Compute, Storage, Networking

Manage Your Container Cluster


IBM Cloud Private on Nutanix for Cloud Native DevOps

Manage Your Cloud Infrastructure

VM's, Compute, Storage, Networking

Manage Your Container Cluster

Manage Your Applications

POWER9 + IBM Cloud Private = Al Superhighway

The **only processor** specifically designed for the Al era

- Train 4X the Deep Learning models per hour on P9 -vs-Competition
- Accelerate your Data Scientists productivity
- Accelerate your Developers productivity with fully supported containers, cloud native DevOps and Cloud
- Al optimized clusters of standard CPU and accelerated GPU

CPU Optimized

GPU Accelerated

Threads per core vs x86

9.5x

Up to 9.5x more I/O bandwidth than x86 2.6x

More RAM possible vs. x86

CPU to deliver

PCIe gen 4

Reduce operating costs with Power L922 Server running IBM Cloud Private

1.66X price-performance per rack unit over tested Intel Xeon SP Gold 6130 servers (Skylake)

IBM Cloud Private mongoDB WebSphere Liberty	IBM Power L922 (16-core, 256GB, 2 VMs)	Intel Xeon SP based 2-socket server (32-core, 256GB, 2 VMs)
Server price ^{2,3,4} -3-year warranty	\$25,932	\$29,100
Solution Cost ⁵ -Server + RHEL OS + Virtualization + ICP Cloud Native VPC Annual Subscription @ \$250 per core per month x 36 months	\$180,049 (\$25,932 + \$10,117 + \$144,000)	\$321,019 (\$29,100 + \$3,919 + \$288,000)
Acme Air workload ¹ Total Transactions per Second - With 2 VM's	36,566 tps	39,312 tps
TPS/K\$	203.1 tps/K\$	122.5 tps/K\$

1.86X

per core performance

43%

Lower solution costs

1.66X

Better Price-performance

^{1.} Based on IBM internal testing of a VM image running the Acme Air workload (https://github.com/acmeair) with containers bound to a socket including a MongoDB microservice. Results valid as of 3/17/18. and conducted under laboratory condition with speculative execution controls to mitigate user-to-kernel and user-to-user side-channel attacks on both systems, individual result can vary based on workload size, use of storage subsystems & other conditions.

^{2.} IBM Power L922 (2x8-core/3.4 GHz/256 GB memory) 2 x 600GB SATA 7.2K rpm LFF HDD, 10 Gb two-port, 1 x 16gbps FCA, EDB Postgres Advanced Server 10, RHEL 7.4 with PowerVM (2partitions@8-cores each),

^{3.} Competitive stack: 2-socket Intel Xeon Skylake Gold 6130 (2x20-core/2.1 GHz/256 GB memory), 2 x 600GB SATA 7.2K rpm LFF HDD, 1 Gb two-port, 1 x 16gbps FCA, RHEL 7.4, KVM (2 VMs@16-cores each)

Pricing is based on Power L922 http://www-03.ibm.com/systems/power/hardware/linux-lc.html, Typical industry standard x86 pricing https://www.synnexcorp.com/us/govsolv/pricing/

^{5.} IBM software pricing for ICP Cloud Native VPC Monthly Subscription .

Reduce operating costs with Power L922 Server running IBM Cloud Private

\$2M less per rack vs tested Intel Xeon SP Gold 6130 servers (Skylake)

- Save over \$2M per 15 server rack with Power L922 Server running IBM Cloud Private vs comparable Intel Xeon SP servers
- IBM Power Systems designed for Cognitive Clouds
 - Deliver more container throughput per core (1.86X vs compared Intel based systems)
 - Deliver more price-performance value per rack unit when running container based workloads

IBM Cloud Private mongoDB WebSphere Liberty	15 x IBM Power L922 (16-core, 256GB, 2 VMs)	15 x Intel Xeon SP based 2-socket server (32-core, 256GB, 2 VMs)
Rack Solution Cost 2,3,4,5 -Server + RHEL OS + Virtualization + ICP Cloud Native VPC Annual Subscription @ \$250 per core per month x 36 months	\$2,700,735	\$4,815,285
Acme Air workload ¹ Total Transactions per Secondw With 2 VM's	548,490 tps	589,680 tps
TPS/K\$	203.1 tps/K\$	122.5 tps/K\$

^{1.} Based on IBM internal testing of a VM image running the Acme Air workload (https://github.com/acmeair) with containers bound to a socket including a MongoDB microservice. Results valid as of 3/17/18. and conducted under laboratory condition with speculative execution controls to mitigate user-to-kernel and user-to-user side-channel attacks on both systems, individual result can vary based on workload size, use of storage subsystems & other conditions.

^{2.} IBM Power L922 (2x8-core/3.4 GHz/256 GB memory) 2 x 600GB SATA 7.2K rpm LFF HDD, 10 Gb two-port, 1 x 16gbps FCA, EDB Postgres Advanced Server 10, RHEL 7.4 with PowerVM (2partitions@8-cores each),

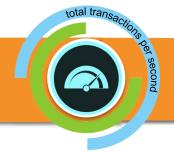
^{3.} Competitive stack: 2-socket Intel Xeon Skylake Gold 6130 (2x20-core/2.1 GHz/256 GB memory), 2 x 600GB SATA 7.2K rpm LFF HDD, 1 Gb two-port, 1 x 16gbps FCA , RHEL 7.4, KVM (2 VMs@16-cores each)

^{4.} Pricing is based on Power L922 https://www.synnexcorp.com/us/govsolv/pricing/

^{5.} IBM software pricing for ICP Cloud Native VPC Monthly Subscription .

Transaction Processing

POWER9 S924


126.2 tps per \$K

2.43x better price performance

3 years with support

51.8 tps per \$K

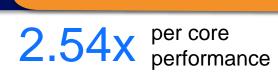
32,221 tps (24 cores)

(56 cores) 21,888 tps

3.4x per core performance

Data Warehousing

POWER9 L922

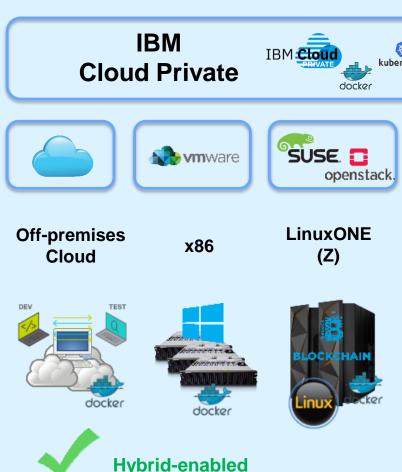

3.74 QphH per \$K

2.44x better price performance

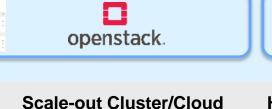
3 years with suppost

1.53 QphH per \$K

3064 QphH (20 cores)

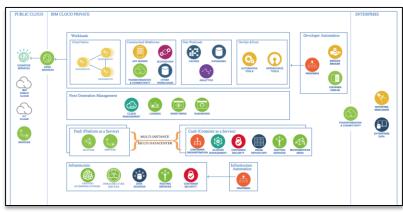


(48 cores) 2891 QphH


Manage **Your Cloud** Infrastructure

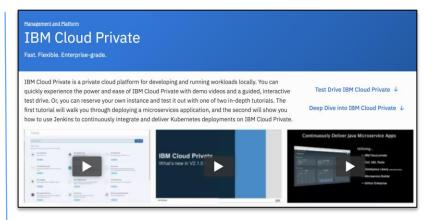
A Fully Integrated, Multi-architecture, Hybrid Cloud-enabled Data Center ready for the Enterprise

VM, Container and Bare Metal Apps


IBM Cloud Private – Digital Assets

Home Page

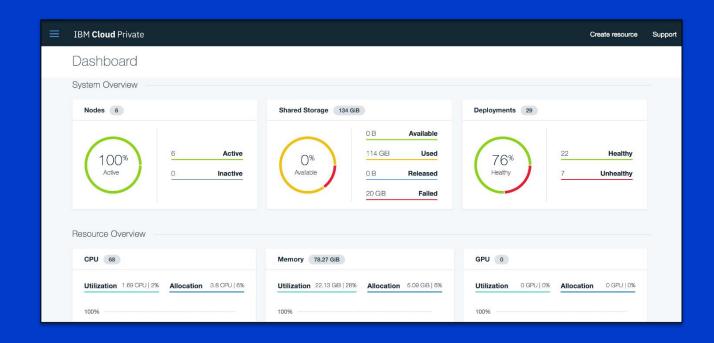
- Private cloud overview
- Intro videos
- IBM Cloud Private for Dummies book


http://ibm.biz/ICP-Home

Garage Method

- Reference architectures
- Best practices

http://ibm.biz/ICP-Garage


Digital Technical Engagement

- Guided demos
- Proof of Technology

http://ibm.biz/ICP-DTE

Try IBM Cloud Private

Free Community Edition

http://ibm.biz/Try-IBMCloudPrivate

IBM and Red Hat Join Forces to Accelerate Hybrid Cloud Adoption

Announced on May 8th, 2018

Certified IBM
middleware on
IBM Cloud Private for
deployment on Red Hat
containers and
Red Hat OpenShift

IBM middleware
Integrated with open
source under one
common platform,
fully supported from
hypervisor through
app

IBM middleware deployable everywhere that Red Hat is supported

Development lifecycle
extended from
inception to production,
with built-in
management plane for
continuous delivery and
operation

Professional
services to advise
and implement
IBM Cloud Garage
Methods and Red
Hat Innovation Labs

"With this news, we will be certifying our private cloud platform – IBM Cloud Private – as well as IBM middleware including WebSphere, MQ and Db2, and other key IBM software, to run on Red Hat Enterprise Linux via Red Hat OpenShift Container Platform."

- Arvind Krishna, Senior Vice President, Hybrid Cloud; Director, IBM Research

Summary

 Building your own private Db2 Cloud is simpler than in the past

- You can still go on your own but it's harder than you think
- Leverage laaS offerings like IBM Hyperconverged System powered by Nutanix
- Or for a full private cloud environment that you can install on your infrastructure or cloud vendor of choice, look into IBM Cloud Private

Kelly Schlamb

Executive IT Specialist, IBM Cognitive Systems

🕞 kschlamb@ca.ibm.com

